Minimal Model Program
Learning Seminar.

$$
\text { Week } 7 \text { : }
$$

- rational singularities.
- log terminal singulanties.
- terminal 3-fold sugulanties.

Geography of singularities:

- From definition or easy implication.
- : Requires a (short) argument
- : Requires some real work.

Properties: Closed under quotients? $X \longrightarrow X / G$
Closed under deformations? $H \subseteq X$
kit $\underbrace{}_{\text {kIt }}$
when H is $\delta^{\text {general. }}$

Cohen-Macaulay:
(R, m) Noetherian local ny, N be a finite R-module. $\operatorname{dim} N=\operatorname{dim} \operatorname{supp} N . N$ is called Cohen -Macaulay if one of the equivalent conditions holds: (CM for short).
i) There exists $x_{1}, \ldots, x_{r} \in m, r=\operatorname{dim} N, x_{i}$ is not a zero divisor in $N /\left(x_{1}, \ldots, x_{i-1}\right) N$ for all i. $\left(x_{1}, \ldots, x_{r}\right.$ is called a N-regular sequence). ii) If $x_{1}, \ldots, x_{r} \in m \quad(r=\operatorname{dm} N)$ and $\operatorname{dim} N /\left(x_{2}, \ldots, x_{r}\right) N=0$, then x_{1}, \ldots, x_{r} is an N-reg sequence
A coherent sheri \mathcal{f} on a scheme X is $C M$ if f_{x} is $C M$ over $\mathcal{O}_{X, x}$ for every $x \in X$
A scheme X is called $C M$ if its structure sheaf O_{x} is $C M$ Serve condition: A sheaf \mathcal{F} on X is said to satisfy S_{d} if for every $x \in X$, Ex has a regular sequence of length $\min \left\{f, \operatorname{dim} 0_{x, x}\right\}$,
$\delta=\operatorname{dim} X$, then X is $C M \Longleftrightarrow O_{x}$ is S_{d}.

Examples: Normal $\Longleftrightarrow R_{1}+S_{2}$, so normal surfaces are $C M$
If R is $C M$ and G sets on R then R^{G} is $C M$ (Hochiter-Roberts)

$$
\begin{gathered}
R[x] /\left(x^{2}\right) \quad 0 \text {-dim } C M \\
R\left[t^{2}, t^{3}\right] \quad 1 \text {-dim } C M \\
X= \\
\operatorname{spec}\left(\mathbb{K}[x, y] /\left(x^{2}, x y\right)\right)
\end{gathered}
$$

This is not CM at the orion

Rational singularities: Y is a variety over a field of char 0 . $X \xrightarrow{f} Y$ is a resolution of sing. We say that f is rational if
(1) $f_{*} O_{x}=O_{r} \quad\left(Y_{\text {normal }}\right)$
(2) Rif* $O_{x}=0$ for iso. $\quad l_{i=1,1 \text { - rational). }}^{\text {R }}$

We say that Y has rational simp if every resolution is ration
Equivalent: $O_{r} \rightarrow R^{i} f_{k} \theta_{x}$ is a quasi-isomovphism in the der cat.
Examples: An singularities. are rational $X \xrightarrow{4} Y=A_{n}$

$$
f^{*}\left(K_{r}\right)=K_{x}
$$

Cone over elliptic curve not rational.

Symplectic: Y Oy symploctic if Y is normal at y and Yreg there a symplectic 2-form which extents on any resolution

Du Bois: $X \subseteq Y$ embeddrg of a schome into a regular scheme $Z \longrightarrow Y \log$ resolution of X which is an isom ootsite X.
E the reduced preimzgo of X in $Z . X$ has DuBons sng if $\mathrm{O}_{x} \longrightarrow \mathrm{Rr}_{*} Q_{E}$ is a g.i.

Rmk: DB singularibies appear oftien in Hodge theory.

Remarks: - Serve duality holds for CM sheaves.

- $H \subseteq X$ Cartier \& H is $C M \Longrightarrow X$ is $C M$.

Proposition: Y be a vaneby over a field of char o.
$f: X \rightarrow Y$ a resolution. TFAE:
i) f is rational.
ii) Y is CM \& $f_{*} \omega_{x}=\omega_{r}$.

Proof: Y projective, D ample Cartier on Y.

$$
\begin{gathered}
H^{i}\left(X, w_{x}(r f * D)\right)=0, i \geq 0, r>0 \\
H^{n-i}\left(X, \Theta_{x}(-r f * D)\right)=0 \quad i \geq 0, r>0
\end{gathered}
$$

The Leroy spectral sequence:

$$
E_{2}^{i, j}=H^{\prime}\left(Y, R^{j} f_{*}\left(O_{x}(-r D)\right) \Longrightarrow H^{i+j}\left(x, O_{x}(-r f D)\right)\right.
$$

The Leray spectral sequence:

$$
\begin{aligned}
& E_{2}^{i, j}= H^{i}\left(Y, R^{j} f_{*}\left(O_{x}(-r D)\right) \Longrightarrow H^{i+s}\left(X, O_{x}\left(-r^{*} D\right)\right)\right. \\
&i) \Longrightarrow \text { iss } \quad \text { By rationality assumption: } \\
& H^{\prime}\left(Y, \theta_{y}(-r D)\right) \simeq H^{i}\left(X, \theta_{x}\left(-r f^{*} D\right)\right)
\end{aligned}
$$

Claim: $H^{i}\left(Y, \theta_{r}(-r D)\right)=0$ for $i<n$ \& $r \gg 0$

$$
\Longrightarrow Y \text { is } C M
$$

\Longleftarrow is also true (proved later on the book).
Proof: $H \subseteq\left|r^{\prime} D\right|$ general element., H Cartier

$$
0 \longrightarrow \theta_{r}\left(-\left(r+r^{\prime}\right) D\right) \xrightarrow{H} \theta_{Y}(-r D) \longrightarrow \theta_{H}(-r D) \rightarrow 0
$$

By the vanishing, we get $H^{\prime}\left(H, O_{H}(-r D)\right)=0$ i<n-1 \& $r \gg 0$. Thus, by induction H is $C M$.
$H \subseteq Y$ is CM \& Cables, hance Y is CM

$$
h^{0}\left(Y, \underline{\omega_{y}}(r D)\right)=h^{0}\left(X, \omega_{x}\left(r f^{*} D\right)\right)=h^{0}\left(Y, f_{*}\left(\omega_{x}(r D)\right)\right.
$$

This implies $f_{x} \omega_{x}=\omega_{r}$.
ii) \Longrightarrow i) By induction on the dimension

Claim: Rif*Ux are sopporbed in O - dim sets.
Proof: $H \subseteq Y$ general, $H^{\prime}=f^{-1} H, \quad f: H^{\prime} \rightarrow H$ resolution.

$$
f_{*} w_{H^{\prime}}=f_{*}\left(w_{x}\left(H^{\prime}\right) \otimes \Theta_{H^{\prime}}\right)=\theta_{H}(H) \otimes f_{*} \omega_{x}=\theta_{H}(H) \otimes \omega_{r}^{\prime \prime}
$$

By induction, we see that $\Theta_{H} \otimes R^{\prime} f * \theta_{x}=R^{i} f * \Theta_{H^{\prime}}=0$ is trivial outside a zero dimensional set.

Therefore $H^{P}\left(Y, R^{q} f_{*} \theta_{x}(-r D)\right)=0 \quad p<g \geq 0$ or if $p<n \& g=0$.
By the spectral sequence we get:

$$
\begin{aligned}
& (x) \\
& H^{0}\left(Y, R^{q} f_{x} O_{x} \otimes_{O_{c}} O_{y}(-r D)\right)=0 q^{<n-1} \\
& \left.H^{0}\left(Y, R^{n-1} f_{*} O_{x} C-r D\right)\right) \cong
\end{aligned}
$$

$$
\operatorname{ker}\left[H^{n}\left(Y, O_{Y}(-r D)\right) \xrightarrow{\alpha} H^{n}\left(X, O_{x}\left(-r f^{*} D\right)\right)\right]
$$

$R^{q}+\theta_{x}$ has 0 - dim supp \& (x) implies that $R^{q} f_{*} \theta_{x} \theta_{x}=0$.
On the other hand α is the dual to:

$$
H^{\circ}\left(Y, \omega_{e}(r D)\right) \longrightarrow H^{0}\left(X, \omega_{x}\left(r f^{*} D\right)\right)=H^{0}\left(Y, f_{x} \omega_{x}(r D)\right)
$$ since $w_{r} \simeq f * w_{x}$. Then α is an ism. $\quad R^{n-1} f=\theta_{x}=0$.

Lemma: (X, Δ) is $k l t, H$ is bps. $H g \in|H|$ general element. Then $\left(H, \Delta_{H}\right)$ is kit. (same for l_{c}).

Lemma 2: $Y \xrightarrow{f} X$ finite, $K_{Y}+\Delta_{Y}=f^{*}\left(K_{x}+\Delta\right)$ then (provided both of them are log pairs).
(X, Δ) kIt $\Longleftrightarrow(Y, \Delta \Upsilon) \mathrm{kll}$
$(X, \Delta) \mid c \Longleftrightarrow(Y, \Delta r) k$
Idea of the proof: Use Riemem - Huruity formula on a log resolution to compare the discrepancies \& observe

$$
a_{E}(x, \Delta)=r a_{E}(Y, \Delta r)
$$

for some positive integer number r. (r is some $r 2 m$ index).

Theorem $\left(E l_{\text {ki k } 81}\right):(X, \Delta) d l t$, then X his rat sing.
Proof: $k_{y} \equiv f^{*}\left(k_{x}+\Delta\right)+A-B \quad y \rightarrow X \log$ resolution

$$
\operatorname{Supp}(B) \subseteq E_{x}(f), \quad\lfloor A\rfloor=0
$$

By KY vanish $R^{\prime} f * O_{Y}(\Gamma B T)=0$ for $j>0$.
Z ample Carter on X. We have a comm daprem:

$$
\begin{aligned}
& \left.H^{i}\left(\operatorname{Or}_{r}\left(-r f^{*} \mathcal{L}\right)\right) \longrightarrow H^{i}\left(\operatorname{Or}(\Gamma B\rangle-r f^{*} \mathcal{L}\right)\right) \\
& 0^{\prime \prime} \\
& \uparrow \quad \uparrow \beta \\
& H^{i}\left(O_{x}(-r \mathscr{L})\right)=H^{i}\left(\Theta_{x}(-r \mathscr{A})\right) \\
& H^{i}\left(X, O_{x}(-r \mathscr{L}) \otimes R^{j} f_{*} O_{x}(\Gamma B 1)\right) \Longrightarrow H^{i+j}\left(Y_{1} O_{y}\left(\Gamma B 1-r f^{*} \nsim\right)\right)
\end{aligned}
$$

$H^{i}\left(O_{y}\left(-r f^{*} \mathscr{L}\right)\right)=0$ for $[\overline{i<n}) \& r \geq 0$ by $K V$ vanish.
We want to conclude that $\mathrm{H}^{\prime}\left(\mathrm{O}_{x}(-r \infty)\right)=0$ for $r \geq 0, i<n$
Hence X is $C M$.
We get the injection

$$
H^{n}\left(O_{x}(-r \mathscr{L})\right) \longleftrightarrow H^{n}\left(O_{r}\left(-r f^{*} \mathscr{L}\right)\right)
$$

By sere duality

$$
\begin{aligned}
& H^{0}\left(Y, \omega_{y}\left(r f^{*} \not \mathscr{L}\right)\right) \rightarrow H^{0}\left(X, \omega_{x} \otimes \theta_{x}(r \Omega)\right) \\
& H^{0}\left(X, f_{x} \omega_{r} \otimes \theta_{x}(r \not \partial)\right) \quad r \gg
\end{aligned}
$$

The surjectivity

$$
H^{\circ}\left(x, f_{*} \omega_{r} \otimes \theta_{x}(r \nsim)\right) \longrightarrow H^{\circ}\left(X, \omega_{x} \otimes \theta_{x}(r \mathscr{L})\right)
$$

for $r \gg 0$ implies that $f_{*} w_{Y} \longrightarrow \omega_{x}$.
So they are isomorphic (rink 1 reflexive shoves).
Thus, X his rational sing.
Proposition: X Gorenstein (K_{x} is Cather). Rational $\Longleftrightarrow C_{\text {2noncal }}$.
Proof: Canonical $\Longrightarrow J I t \Longrightarrow$ rational.
X rational \times Gorenstern. $Y \xrightarrow{R} X$ a resolution
$\pi^{*}(K x)=k_{x}+\underbrace{E-F}$ integral ≥ 0 with no common support.
If we push-forward $K_{Y}+E-F \& E \neq 0$, then we gel 2ssocited primer on the inge of E. This contindicti $\pi_{*} \omega_{Y} \cong \omega_{x}$

Proposition: Symplectic \Longrightarrow rational \& Gorenster.
Proof: If φ is a 2 -form, then φ^{r} generdes $\square \downarrow$ the line bundle $\omega_{x r y}$. The fact that $\pi^{*} \varphi$ extends as X 2 realer holomorphic form $\Longrightarrow \pi^{*} \varphi^{r}$ extends Hence, $\quad \pi_{*} \omega_{y}=\pi_{*}\left(\pi^{*} \varphi^{r}\right)=\varphi^{r}=\omega_{x}$ -

$$
\pi^{*} \omega_{x}=\omega_{r} \otimes \theta_{r}(-F) .
$$

Characterization of Gorenstein:
(Rim) local ring is Gorensfein there exists 2 regular sequence x_{1}, \ldots, x_{r} such that $R /\left(a_{1}, \ldots, a_{r}\right) R$ is Gorenitern 0 -dim
$N_{\text {akayam2's }}$ Lemma $\Longrightarrow R /\left(a_{1} \ldots, e_{i}\right) R$ is Gorenstein for every i.

Lemma: Let $(o \in X)$ be an index 1 canonical 3 -fold sing. and $\theta \in H \subseteq X$ a general hyperplane section. Then, either $(O \in H)$ is a Du Val sing or an elliptic sag.

Idea: $H^{\prime} \xrightarrow{\pi} H$
$R_{*} w_{H^{\prime}} \simeq m w_{H} \quad m=1$, then it is $D_{U} V_{2 l}$ $m>1$, is an elliptre singe

Theorem: All terminal 3-fold sing of index 1. are cDV. $C=$ one parameter deformation of a $D_{u} V_{a l} \mid$ sig $)$.

Symplectic examples
$\mathbb{C}^{n}, G \leqslant G L_{n}(\mathbb{G})$ a finite group.
\mathbb{C}_{1}^{n} / G is a quotient syr. Hence kIt.
$G \leq S \operatorname{Ln}(\mathbb{G})$, we can show that \mathbb{T}^{n} / G is a sympl sur
If $x \in X$ is a cone and is symplectic, then is isomorphic to a Lie group quotient by the smallest nonzero nilpotent orbit.

Terminal 3-fold singularities:
Theorem: Let $(O \in X)$ be a normal isolated 3 -fold sing.
Assume K_{x} is \mathbb{Q} - Cartier of index r and $(\overline{0} \in \bar{X}) \xrightarrow{r}(0 \in X)$ be the index one cover. The group μ or of $r^{\text {th }}$-roots of unity acts on \tilde{X}. (1) $(0 \in X)$ is terminal if and only if a general member $H \in I-k_{x} \mid$. containing O is Du Val.
(2) The following is a complete list of all $\widetilde{H}:=\pi^{*}(H), H$ and the action of pr on \mathbb{G}^{4}.

name	type of $\tilde{H} \longrightarrow H$	r	Type of action
cArr	$A_{k-1} \longrightarrow A_{k r-1}$	r	$1 / r(a,-a, 1,0 ; 0)$
$c A_{x / 2}$	$A_{2 k-1} \longrightarrow D_{k+2}$	2	$1 / 2(0,1,1,1 ; 0)$
$C A x / 4$	$A_{2 k+2} \longrightarrow D_{2 k+1}$	4	$1 / 4(1,1,3,2 ; 2)$
$C D / 4$	$D_{k+1} \longrightarrow D_{24}$	2	$1 / 2(1,0,1,1 ; 0)$
$C D / 2$	$D_{4} \longrightarrow E_{6}$	3	$1 / 3(0,2,1,1 ; 0)$
$C E / 2$	$E_{6} \longrightarrow E_{7}$	2	$1 / 2(1,0,1,1 ; 0)$.

$1 / r\left(a_{1}, \ldots, a_{4} i b\right)$ means that the erabor ξ of μr acts on the coordinates x_{1}, \ldots, x_{4} \& on the equation f as:

$$
\left(x_{1}, \ldots, x_{4} ; f\right) \longmapsto\left(\xi^{a_{1}} x_{1}, \ldots y s^{\alpha_{4}} x_{4} ; \xi^{b} f\right) .
$$

Some useful statements about terminal 3-fold sip:
Theorem (Hayarawa): For a terminal 3-fold smpularity $P \in X$ of index $r>1$, there exists a partial resolution.

$$
X_{n} \longrightarrow \ldots \longrightarrow X_{1} \rightarrow X_{0}=X \ni p
$$

such that X_{n} is Gorenstein and each $f_{i}: X_{i+1} \longrightarrow X_{i}$ is a divisorial contractor to a point of index $r_{i}>1$, with extracted divisor of

Theorem (Kollair-Morr): Let X be a terminal 3-fold and $e: X \rightarrow Z$ be a flipping contraction. Then, there is a singular point
on the flipping lows. on the flipping lows.

Remark: The above theorem is crucial to prove the termination of terminal 3-fold flips: Terminal 3-folds have isolated singularities. To prove that flips terminate, we will associate a weight function which counts certain contribution from each singular point (this function, called the difficulty function is non-negabice). Then, we prove that this contribution of the sing drops diseritely which each flip. Hence, flips most terminate

In dimension $\geqslant 4$, there are examples of "smooth" flips, i.e., flips where the flipping lows is contained in the smooth lows of the variety.

Examples of singularities:
Terminal \& not smooth: $x^{2}+y^{2}+z^{2}+\omega^{2}=0$. (terminal 3 -fold).
Canonical \& not terminal: $\quad x^{2}+y^{2}+z^{n}=0$.
Kit \& not canonical: \mathbb{C}_{1}^{2} / G with $G \leqslant G L_{2}(\mathbb{C})$ not in $S L_{2}(\mathbb{G})$,
dIt \& not kit: $\quad\left(A l^{2}, H_{1}+H_{2}\right)$
Ic \& not JUt: Cone over elliptic curve.
rat \& not kit: Cone over elliptic/inkolution
$C M+D B$ \& not rat: cone over elliptic curve.
quotient \& not symplectic: \mathbb{T}^{2} / G with $G \leqslant G L_{2}(\mathbb{G})$ not in $S L_{2}(\mathbb{G})$.

